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Abstract—Machine learning data privacy has been improved
with Federated Learning approaches. However, some obstacles to
guaranteeing traceability, openness, and participant contribution
incentives prevent its widespread use. In this study, Ethereum
blockchain technology is integrated into the data stream Kafka-
ML framework, presenting a novel asynchronous and blockchain-
based Federated Learning approach. By utilising Ethereum for
transparent and auditable participant tracking, this integration
overcomes some shortcomings such as auditability and model
sharing reliability. Furthermore, Ethereum smart contracts al-
low for automatic reward distribution systems, which promote
equitable incentive systems and increased involvement in the
Federated Learning process. To demonstrate its potential, an
extensive evaluation has been carried out on a wireless net-
work technology detection use case. By improving transparency,
traceability, and incentive structures of Federated Learning, it is
expected to strengthen the robustness of flexible machine learning
collaboration with data streams.

Index Terms—Kafka-ML, Data Streams, Deep Learning,
Blockchain, Federated Learning

I. INTRODUCTION

Machine learning (ML) paradigms have changed with the
introduction of Federated Learning (FL), especially in sit-
uations where strict data security and privacy requirements
are required. Kafka-ML [1], an open-source framework for
integrating ML with data streams, has made an important con-
tribution by allowing for seamless and flexible ML collabora-
tion with data streams [2]. Without centralising sensitive data,
Kafka-ML enables decentralised model training across many
data sources, protecting privacy and improving scalability.

By communicating just model updates rather than raw data,
FL is a general approach that facilitates distributed model
training while preserving data privacy. Kafka-ML, a frame-
work that supports the implementation of FL, enables different
data custodians to work together training models. Several

obstacles still exist in spite of these developments. Keeping an
unchangeable log of every training session, promoting fairness
and incentives for participants, and guaranteeing contribution
transparency are a few of these. The acceptance and efficacy
of FL frameworks may be impeded by the absence of efficient
solutions for tracking contributions and allocating rewards [3].

Blockchain technology (in this case Ethereum) [4], ad-
dresses the challenges of promoting fairness and ensuring
transparent contributions among participants. All transactions
and events are recorded in its decentralised and immutable
ledger, improving accountability by offering a permanent and
verifiable history of contributions, meaning that each partici-
pant’s input can be traced. Integrating Ethereum’s capabilities
into the Kafka-ML FL process can significantly improve
transparency, traceability, and accountability, building a fairer
environment where all contributions are easily verifiable.

The integration of Ethereum blockchain technology into
Kafka-ML can provide a reliable system for the recording of
all training-related operations on an immutable ledger while
maintaining the data stream support for ML models. This en-
sures that each participant’s efforts are publicly monitored and
verifiable, which builds confidence among collaborators. Fur-
thermore, the Ethereum blockchain’s usage of smart contracts
makes it possible to automate reward systems. Participants can
be compensated for their contributions, with awards distributed
in a transparent and tamper-proof manner.

In recent years, the integration of Electric Vehicles (EVs)
and Vehicle-to-Everything (V2X) ecosystems has attracted a
great deal of attention due to the potential benefits in terms of
connectivity, efficiency and safety. Seamless communication
between EVs and the surrounding infrastructure is fundamen-
tal to the optimal functioning of these systems. A critical
aspect for this interaction is the accurate characterisation of the



different wireless communication technologies. Considering
the significant volumes of data generated by these systems,
leveraging big data analytics is essential to extract valuable
insights and enable intelligent decision-making. This study
leverages a dataset of IQ samples from multiple wireless
technologies to develop a ML model that can effectively
characterise these technologies. By employing a FL approach
in which EVs collect, train and share models with a central
server located at charging stations, this research aims to
enhance the collaborative nature of EVs and V2X networks.

In this work, a novel redefinition to improve the trans-
parency, traceability, and incentive structure of Kafka-ML’s
FL feature thanks to blockchain is described. In addition
to address the current issues, this integration creates new
opportunities for fair and safe ML collaboration with data
streams, aiming to create a more reliable and robust FL
environment.

The rest of the paper is structured as follows. Section II
presents the related work and their differences against the
implementation of blockchain-based federated training into
Kafka-ML. Section III presents the redefined architecture of
Kafka-ML. Section IV shows the components and the pipeline
of a Blochain-based federated training job in Kafka-ML.
Section V provides an evaluation over different test cases.
Finally, Section VI provides a concise overview of the study
and explores potential avenues for future growth.

II. BACKGROUND AND RELATED WORK

Kafka-ML [1] is an open-source framework for managing
ML pipelines via data streams, supporting different popular
ML libraries (TensorFlow and PyTorch), GPU acceleration and
training and inference natively with data streams [5]. It allows
different training techniques such as distributed learning [6],
FL [2] or online training [7], being able to combine some of
these techniques according the user’s needs [8]. It provides a
user-friendly web interface for both experts and non-experts to
handle the ML/AI pipeline. Users can define models similarly
to how they would do so on their local environments. Once
models are set up, they can be trained, evaluated, and inferred
easily through the Web UI.

The identification of Radio Access Technologies (RATs) via
different spectrum sensing technologies has been the subject
of extensive research [9]. Traditional methods, such as energy
detection and matching filter detection, have provided prelimi-
nary solutions, but they have problems in detecting numerous,
simultaneous wireless signals. Recent developments use deep
neural networks to increase the accuracy of recognition over
several RATs, including Wi-Fi and LTE. For these kinds of
dispersed training activities, FL methodology and Kafka-ML
works well because of their capabilities.

Asynchronous FL is a variation of FL in which the de-
vices update their models independently without needing to
synchronise with each other [10]. It reduces delays caused by
slower devices, improving overall efficiency in heterogeneous
ecosystems. This technique makes faster model updates pos-
sible while maintaining accuracy in different environments.

This flexibility is critical in applying FL to diverse real-world
scenarios.

The integration of blockchain technology into FL systems
has been intensively researched to improve trustworthiness,
accountability, and fairness of training tasks. Google intro-
duced FL in 2016 to address concerns about communication
costs and privacy by enabling decentralised model training
using local data [11]. However, FL has a lot of issues with
the quantification of equity metrics (client fairness is diffi-
cult to assess) and the robustness of accountability measures
(hard to track each individual contribution). The absence of
means to check local models and ensure data integrity in
traditional FL systems might result in malevolent behaviour,
as it allows malicious participants to introduce tampered or
poisoned data into the system. Numerous scholars have sug-
gested blockchain-based methods to deal with these problems.
Others use blockchain for safe exchange and verification of
local model updates, guaranteeing client accountability and
guarding against erroneous model updates. FLChain [12], for
instance, introduces an auditable and decentralised system that
rewards honest participants and identifies malicious nodes.

A trustworthy FL architecture based on blockchain espe-
cially made for COVID-19 detection by X-rays is introduced at
[13]. This architecture implements a smart contract-driven and
data-model provenance registry to maintain and record local
data and model versions, leveraging blockchain technology
and smart contracts to ensure data integrity and auditability.
In addition, a weighted fair training data sampler algorithm
is suggested to handle heterogeneity in data and enhance
the FL model’s fairness. This method shows how blockchain
technology can be used to improve FL systems’ fairness
and accountability, thereby enhancing the credibility of AI
applications in this field.

Similarly, VFChain [14] offers a blockchain-based verifi-
able and auditable FL system. In order to record verifiable
proofs and collectively aggregate models, VFChain employs
a committee selection procedure via blockchain, improving
robustness and guarding against manipulation. Additionally,
it facilitates safe committee rotation, which increases au-
ditability, and adds an authenticated data structure to boost
verification proof efficiency. Another similar framework is
BlockFed [15], which is designed to enhance blockchain-
based FL systems by addressing critical challenges such as
communication overhead, privacy concerns, and vulnerability
to poisoning attacks. They manage to address this problems by
employing sparse local training, compressing model updates
using singular value decomposition, and injecting differential
privacy noise. Zhang et al. [16] propose a FL framework that
integrates blockchain technology and tackle the challenges
associated with non-independent and identically distributed
(non-IID) data.

Although all of these frameworks provide solutions for
adopting blockchain-based FL, there are several features which
are missing in comparison with Kafka-ML. First of all, none
of them is open source, or at least no reference or example of
any source code has been found, which limits the applicability



and reproducibility of those solutions. In addition, all of them
seem to work with static datasets and not with dynamic and
real-time data streams. One of the advantages of using Kafka-
ML is the ability to work directly with data streams, enabling
the adoption of use cases related to Big Data or IoT. Finally,
the approaches studied seem to work synchronously between
models and clients, which is not an efficient approach when
working with IoT devices due to possible disconnections or
resource imbalances between the different involved clients.

There are other frameworks that work asynchronously and
in a similar way to that proposed in this paper. Some of those
frameworks are BAFL [17], AFLChain [18] or BCAFL [19].
By using different algorithms or variations in blockchain util-
isation, model aggregation can be performed asynchronously.
However, the same limitations persist: while previous solutions
are not open-source, a more critical issue is their inability to
work directly with data streams, making them less adaptable
for real-time applications.

III. BLOCKCHAIN-ENABLED KAFKA-ML FL
ARCHITECTURE OVERVIEW

Kafka-ML orchestrates ML/AI jobs by using data streams
(streamed information at Kafka). In a previous work a new
architecture was defined to support the FL training procedure
[2]. In this work, slight changes has been made into the
architecture to allow blockchain integration with Kafka-ML
and FL.

As per the single responsibility principle, the Kafka-ML
architecture comprises a set of services, which together form
a microservice-based system. To provide isolation and ease of
portability, every component resides inside Docker containers.
Through Kubernetes orchestration, this platform is managed
and deployed across a cluster of nodes and dispersed produc-
tion infrastructures, enabling continuous monitoring of Kafka-
ML services and deployed training tasks. In this work, no
new modules has been developed for Kafka-ML, but some of
them has been modified in order to be able to interact with
blockchain. Also, in order to be able to work with a blockchain
in an easy way, a private Ethereum node has been deployed
in the cluster for this proof of concept.

Fig. 1 depicts the current architecture of Kafka-ML, pre-
senting the different functionalities separated by modules,
highlighting the modifications presented in this work and
emphasising the separation between Kafka-ML Platform (the
original framework with slight modifications) and Kafka-ML
Federated (the module that enables federated model training
using data streams).

Now, the Kafka-ML Platform will leverage some details of
the deployment and orchestration of the federated process into
blockchain. The way how Kafka-ML Federated clients work
has been slightly modified to be able to read key details from
blockchain. In the next subsections the main components are
detailed.

A. Kafka-ML Platform Architecture
The Kafka-ML framework (Fig. 1a) is composed of frontend

and backend modules that manage user interactions such as

model creation, configuration deployment, and metric visuali-
sation. These modules, along with their backend counterparts,
have been slightly adjusted to gather additional information
when deploying federated models with blockchain tracking.
This allows for the recording of every action on the blockchain
during the federated training process, which will be further
explained in Section IV-B. Despite these modifications, model
creation remains unchanged, allowing users to easily define
models through the user-friendly interface, even those without
technical expertise.

One of the modified elements is the “Federated Training
Module”. It coordinates training across devices in a federated
way, interacting with both Apache Kafka and the chosen
Ethereum blockchain to store model weights and metadata.
Upon initiating training through “Kafka-ML Federated”, the
module awaits trained weights for aggregation and redis-
tribution, ensuring that every federated client receives the
latest update. The model weights from “Kafka-ML Federated”
clients are combined to converge towards a consistent model.

The remaining Kafka-ML Platform architecture modules
remain unaltered. The “Platform Data Control Logger” collects
metadata from user data sent for training to generate the
datasources that the models will target. The “Model train-
ing” and “Model inference” modules are deployed when a
user wants to train or serve a model, respectively. Training
options include classic training in TensorFlow and PyTorch
[5], distributed model training [6], incremental model training
[7], or a combination of these with GPUs if specified [8].
For inference, users can deploy models by specifying brokers,
Apache Kafka input/output topics, replication settings, and
deployment details for Kubernetes clusters.

Kafka-ML, along with its latest enhancements, implementa-
tion, configuration files, and several illustrative examples, can
be found in the GitHub repository1.

B. Kafka-ML Federated Architecture

Four components comprise up the “Kafka-ML Federated”
architecture (Fig. 1b), allowing asynchronous federated model
training. The “Federated Backend”, “Federated Data Control
Logger”, “Federated Model Control Logger”, and “Federated
Model Training - Worker” are these modules. To protect data
privacy, every “Kafka-ML Federated” client instance runs a
separate Apache Kafka deployment.

The “Federated Data Control Logger” and “Federated
Model Control Logger” components constantly monitor dif-
ferent Apache Kafka topics. The main goal of this monitoring
is to collect metadata related to the models and data, and
if their metadata matches, training jobs may be deployed.
All gathered data is sent to the “Federated Backend”, which
handles requests from the previously stated loggers. Also, it
evaluates if the models and the incoming data streams are
compatible. The module starts a new Kubernetes job to start
a “Federated Model Training - Worker” if compatibility is
confirmed. These modules remain unaltered.

1Kafka-ML GitHub repository: https://github.com/ertis-research/kafka-ml
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Models are obtained and trained using data streams from
the federated module in the “Federated Model Training -
Worker” component. This module reconstructs the model and
trains it using data streams by utilising the metadata that was
previously acquired from the “Federated Backend” about the
models that are available on the Kafka-ML Platform (Fig. 1b,
step 1), in addition to the data streams that are available from
Kafka-ML Federated, guaranteeing the privacy of information
(Fig. 1b, step 2). Finally, it sends the trained model back to
the Kafka-ML Platform so that it may be aggregated and the
asynchronous federated training cycle can continue (Fig. 1b,
step 3). In this new version, rather than working with control
topics for the management of transmission and reception of
model weights, this workload is derived to the blockchain,
so that it traces by whom and when this operation has been
carried out.

C. Blockchain integration to the Architecture

The blockchain integration within the “Kafka-ML Feder-
ated” architecture adds a layer of security and transparency
to the model training and transmission process. Instead of
relying on control topics for managing the transmission and
reception of model weights, the blockchain now handles
this responsibility. Each time a “Federated Model Training
- Worker” completes a training cycle, the resulting model
weights, along with a timestamp and the worker’s identity,
are recorded as a transaction on the blockchain. This ensures
that every model update is immutably logged, establishing a
clear and verifiable history of the model’s evolution.

Additionally, the blockchain’s transparency can be leveraged
to provide stakeholders with insights into the model training
process. By querying the blockchain, users can trace the
lineage of a model, identifying which workers contributed to
its training and when updates were made. This information can
be valuable for auditing purposes, ensuring compliance with
regulatory requirements, and fostering trust in the FL process.

Furthermore, the blockchain can facilitate a reward system
where contributors are rewarded based on their contributions
to the model’s development. This can be achieved by assigning

tokens or other forms of value to successful model updates,
encouraging active participation and rewarding users for their
valuable contributions.

IV. KAFKA-ML & BLOCKCHAIN INTEGRATION

This section explores the integration of blockchain within
the FL approach of the Kafka-ML framework, managed and
orchestrated by smart contracts deployed on the Ethereum
blockchain to ensure transparency and traceability in the FL
process.

A. Smart Contract for FL process traceability

A smart contract is an agreement that has its terms encoded
directly into code. When certain requirements are satisfied,
they operate on the Ethereum blockchain and automatically
enforce and execute the rules. Ethereum’s smart contracts are
useful because they may provide confidence and transparency
in transactions by facilitating, confirming, and enforcing the
negotiation or fulfilment of an agreement without the need for
middlemen.

Smart contracts are essential in the FL process at Kafka-ML,
governing clients contributions. They facilitate the FL process
by organising the acquisition and distribution of model updates
and ensure the integrity and accuracy of the shared models.

Furthermore, a smart contract has been developed that stores
all the information of the queue of models to be aggregated
as well as the last global model updated continuously by
federated clients. The entire contract is openly available and
free to use on Kafka-ML’s GitHub Repository2. Algorithm 1
shows how the different training elements work, emphasising
the functions that interact with the blockchain. Clients now
use functions like getLastGlobalModel or sendModel to get
the latest model or send their contribution while the platform
use saveGlobalModel to set the latest model available or
getQueueSize to fetch one of the contributions and aggregate
them, being all of this interactions written into the blockchain
and thereby creating the cyclical procedure of FL procedures.

2Kafka-ML blockchain-Based FL Smart Contract: https://github.com/
ertis-research/kafka-ml/blob/master/model training/tensorflow/contracts/
FederatedLearning.sol



Algorithm 1: Algorithm for blockchain-based FL pro-
cedure at Kafka-ML

Generic Variables: Contract, TopicAgg ,
ConfigKafka

Note: Blockchain-related functions are underlined.
Procedure at Kafka-ML Platform
Input Data : Model0, maxAggRounds,

ConfigTrain, currRound = 0
Output Result : ModelGlobal, Metrics
ModelGlobal = Model0, Metrics = {}
while currRound ≤ maxAggRounds do

saveGlobalModel(ModelGlobal, ConfigTrain,
currRound, Contract)

while getQueueSize(Contract) ≤ 1 do
// wait

end
ModelcurrRound = dequeueModel(Contract)
ModelGlobal = weightsAverage(ModelGlobal,
ModelcurrRound)

calculateReward(ModelcurrRound, Contract)
end
stopTraining(Contract)
distributeTokens(Contract)
sendFinalMetrics(ModelmaxAggRounds)
Procedure at Federated Kafka-ML Client
Input Data : Contract, ConfigKafka

while isTrainingActive(Contract) do
ModelcurrRound, ConfigTrain =

getLastGlobalModel(Contract, ConfigKafka)
trainedModel = train(ModelcurrRound,
ConfigTrain)

sendModel(trainedModel, Contract,
ConfigKafka)

end

B. Blockchain integration into the Kafka-ML FL process

In this section, the pipeline for a blockchain-based asyn-
chronous FL task in Kafka-ML is explained, highlighting the
key components that has been modified to interact with the
blockchain and trace the process. Fig. 2 shows a sequence
diagram describing the whole procedure.

The user will first define the architecture of the models to
be deployed, just by inserting the source code of the model
in the Web UI. If desired, they can also group the models
into configurations and deploy them all at once. The user will
need to fill out a few more fields after creating the setup
and deciding to deploy the models for federated training.
These parameters mostly contain the number of rounds of
aggregation, the technique of aggregation to be employed, and
some requirements that the data should adhere to in order
to train the model. Since all of the blockchain configuration
up to this point was made during the Kafka-ML Platform
deployment, this process is identical to the non-blockchain
Kafka-ML federated training approach.

The model is then set up as the genesis model once it is
deployed for federated training. Its architecture and metadata
are published in a newly generated instance of the Smart
Contract at the blockchain. As a result, a new model is created,
and all deployed Kafka-ML Federated clients —which are
always listening to the “Model Control Topic”— may be
notified. If the model is ready for blockchain-based training,
they can then configure everything necessary to communicate
with the appropriate Smart Contract instance.

Upon discovering a new model, a Kafka-ML Federated
client examines its instance of Apache Kafka to check if any
data is available for training. The process of matching involves
using schema matching, which is a JSON representation of
the properties of the dataset, to verify features of the dataset
such as shape and properties (e.g., number of classes, labels,
etc.). The Kafka-ML Federated client will deploy a “Federated
Model Training - Worker” task if matching schemes and
dataset shapes match.

In this job, the model is loaded using the details from
the Smart Contract, trained using data from the local Apache
Kafka, and then returned to Kafka-ML Platform by using the
Smart Contract (metadata and weights location at Kafka) and
Apache Kafka. The Smart Contract is used to store the model
metadata and where the weights are located at the Platform
Apache Kafka (as store weights at blockchain is a problem
because their size).

Continuing with the training, the “Federated Model Training
- Worker” at Kafka-ML Platform will retrieve the models and
weights from the Smart Contract queue and aggregate them,
obtaining the resulting model as the new global model. Each
of these actions is considered an aggregation round. These
aggregation rounds will be repeated as many times as chosen
by the user. Kafka-ML Federated training clients always read
the latest global model written by the Kafka-ML Platform
training orchestrator, so in case they take longer to train or get
temporarily disconnected when they request the model again,
they will read the most updated version.

Thanks to the blockchain, every action taken during the FL
process (sending model updates, setting up new global mod-
els, etc.) is traceable. Anyone can monitor the progress and
functioning of training between the Kafka-ML platform and
Kafka-ML Federated clients by using blockchain exploring
tools such as Blockscout. Therefore, a complete auditability
of the training process is guaranteed and every single step
of the training process can be validated, strengthening the
trustworthiness of the system.

Fig. 3 shows the Blockscout tool where the transactions car-
ried out during the federated training process can be observed.

V. EVALUATION: BLOCKCHAIN-ENHANCED FL FOR
TRAFFIC CHARACTERISATION OF WIRELESS

TECHNOLOGIES

The rapid evolution of wireless technologies needs advanced
methods for managing and analysing the massive amounts
of data created by connected devices. FL can be used as an
approach to address this, allowing the training of models with



Fig. 2: Federated model training pipeline in Kafka-ML

Fig. 3: Blockscout displaying on-chain transactions for Kafka-
ML Federated Learning.

data from multiple devices while maintaining data privacy.
Also, if blockchain is integrated at the FL process, it can
enhance transparency and traceability, ensuring reliable data
exchange across devices.

In this use case, the Kafka-ML framework and the
blockchain-based FL approach are considered for traffic char-
acterisation of wireless technologies. A comprehensive eval-
uation of the Kafka-ML blockchain FL feature is presented,
using a detailed dataset of IQ samples from various wireless
technologies to train a classifier for their recognition.

A. Traffic Characterisation in Wireless Technologies. Dataset
Overview

The objective of this use case is to characterise different
wireless technologies through a deep learning model within
the context of (EVs). This characterisation is crucial for
enhancing the performance and integration of EVs within
(V2X) ecosystems. In this use case EVs would be the clients
collecting data about the different wireless technologies and
training a model to identify them, while also collaborating
with other EVs by sharing their model and updating a global
model at the charging stations (which play the role of central
server). Fig. 4 shows a simulated illustration of the use case.

Model training Model sharing
and update

Fig. 4: EVs characterising wireless technologies (left) and
updating a global model via charging stations (right).

The dataset utilised in this research has been captured by
UGent [20] and includes IQ samples of different wireless
communication technologies (LTE, 5G NR, WiFi, ITS-G5, and
C-V2X PC5), along with noise samples captured at a sampling
rate of 20 Msps.

The LTE dataset was collected using the srsRAN platform
and USRP X310 boards in FDD mode at 10 MHz and 5.9



GHz, with traffic loads ranging from 5 to 50 Mbps and MCS
indices of 1 to 28. The 5G NR dataset used OpenAirInterface
in a 1:1 TDD configuration for NSA mode at 10 MHz and
5.9 GHz, with comparable traffic volumes and MCS indices.
WiFi data gathered using the openwifi SDR solution included
traffic loads from 10 to 200 packets per second, packet sizes
ranging from 500 to 1500 bytes, and MCS indices ranging
from 0 to 7. The ITS-G5 and C-V2X PC5 datasets, obtained
on the Belgian Smart Highway testbed with the CAMINO
framework, featured a variety of packet sizes and intervals,
with MCS indices from 0 to 7 for ITS-G5 and 0 to 20 for
C-V2X PC5. More detailed about the dataset and the use case
can be found at [21].

To evaluate the new Kafka-ML feature using this dataset,
the same preprocessing and a similar deep learning model
(reduced in size from the original) used in [21] will be
employed for comparison of the results. This approach allows
us to effectively analyse the model’s performance and char-
acteristics under similar conditions, leveraging the established
methodologies and findings from the earlier study.

White Gaussian Noise is applied to the IQ samples to
replicate different SNR levels, from -10 dB to 30 dB, as part
of the preprocessing process. Subsequently, the Fast Fourier
Transform (FFT) of the IQ samples is calculated for neural
network training and the real-time recognition of wireless
technologies.

A convolutional neural network (CNN) with an 880x2 input
shape is the model which is being used. Three convolutional
blocks are used at first, then flattening and dense layers for
classification. The real and imaginary components of the IQ
sample FFT, organised as a 2xM matrix, make up the CNN’s
input.

The input data are processed using the three convolutional
blocks to extract features. The first layer has 32 filters of size
1x3, the second layer contains 16 filters of size 2x3, and the
third layer contains 8 filters of size 2x3. ReLU activation, batch
normalisation, and dropout are the regularisation techniques
used in each layer. Max pooling is done after the convolutional
layers.

The output of the convolutional layers is flattened and fed
through two fully connected layers. The first fully connected
layer has 64 neurons and employs ReLU activation, batch nor-
malisation, and dropout. The last layer is a softmax classifier,
which allows the input signals to be classified by producing
the probabilities for every class.

B. Experimental setup

A highly capable infrastructure is available for conducting
a thorough evaluation [22]. The following is a description of
the system where the assessment took place:

• Hardware Configuration. The deployment of Kafka-
ML Cloud has been performed on a computer with an
Intel(R) Core(TM) i9-10900K CPU and 64 GB of RAM.
The deployment of the multiple Kafka-ML Federated
clients has been performed on a Kubernetes cluster with
7 state-of-the-art servers where each server has two

Intel(R) Xeon(R) Gold 6230R CPU with two NVIDIA(R)
Tesla(R) V100 GPUs as well as 384 GB of RAM.

• Software configuration The PC with the Kafka-ML runs
Ubuntu 22.04 and K3s v1.28.3. Each node of the cluster
runs K3s v1.28.3 on top of Ubuntu 22.04.3 LTS. Every
deployment of Kafka-ML Federated has been done in a
separated namespace emulating different entities.

C. Training evaluation

The subsequent experiments were prepared to assess the
performance of the training. The model was trained on the
chosen dataset in several configurations, concretely with 2,
4 and 8 federated clients. Initially, all clients had access to
the entire dataset in order to track how the training metrics
(validation accuracy, elapsed time and token distribution) vary
with the number of clients. Then the dataset was divided in a
randomly dispersed way to carry out another test. This should
produce a more robust and accurate model than if the model
had been trained individually for each customer, even if the
classes are slightly out of balance. Every test were carried out
with a batch size of 512, 3 epochs, and 32 aggregation rounds
and using previous FL implementation available at Kafka-ML
and the new blockchain-based implementation.

To assess the effectiveness of these FL approaches, the
evaluation considers not only the model’s final accuracy but
also the cumulative training time and the rewards received
by each client. This comprehensive evaluation will reveal
how workloads are distributed among clients, ensuring that no
client is overworked during the training process. Additionally,
analysing the reward distribution will provide insights into
each client’s contribution to the overall model improvement,
helping to identify any clients who may be underperforming
or facing challenges during training.

1) Experiment 1: Training evaluation using the complete
dataset: Firstly, the test was performed on the full dataset
to observe how, regardless of 2 or more customers, they all
achieve similar results. The results of the test with the whole
dataset can be seen in Fig. 5.

It can be seen that regardless of the number of customers
or the implementation used, the results are similar. Something
to note is that once the training weights stabilise after several
rounds (weights are initialised randomly), higher accuracies
are achieved earlier when fewer clients are involved. This is
because the same number of aggregation rounds are being
maintained for a larger number of clients, causing each client
to train fewer rounds, resulting in slower learning. Another de-
tail that is similar is the training time between techniques given
the number of clients and this dataset, with the blockchain
implementation being slightly slower as transactions have to
be confirmed. However, the additional task of interacting with
the blockchain does not significantly increase the workload.
Fig. 6 shows a graph with a time comparison.

An interesting detail is the way in which the tokens have
been distributed. These tokens are distributed in a fixed way
such that if the contribution is better than the previous one,
a base amount is distributed, decreasing to 0 if it is similar
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given the metrics, slightly worse, or a bad contribution. Fig.
7 shows the distribution of these tokens given the number of
clients for this dataset.

As can be seen, there is a slight imbalance in the tokens dis-
tributed, which becomes more pronounced as more customers
appear. This may be due to the fact that the first clients to
finish their training get higher rewards when comparing their
metrics at earlier aggregation rounds, which causes subsequent
clients to compare their models with a more competitive set
of metrics.

2) Experiment 2: Training evaluation with randomly split-
ting the dataset: In the next experiment, the dataset has
been randomly distributed across the different federated clients
(with consistent seeding for reproducibility). The results ob-
tained are shown in Fig. 8.

In this case, it becomes slightly clearer that as the number
of customers increases, the accuracy decreases slightly. This
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is due to what was described previously, but as the full dataset
is not available now, this is somewhat more accentuated. It is
worth noting that the models trained with the new methodol-
ogy have slightly lower accuracy. Although this should not be
a concern since the algorithm is the same, it might be due to
the data distribution and/or the model weights randomness at
the initialisation stage.

A thing to highlight is the training times in this example,
where the new implementation is faster than the old one (Fig.
9). This may be because, as the datasets are now smaller,
the training phases are completed earlier, so weights are
sent earlier to Kafka, overloading the control topics. This is
accentuated in cases with a larger number of clients (it can be
fixed by a using a good topic policy, partitioning or replicating
the topics as needed). In the new implementation, as there is
no dependence on Kafka for control messages, there are no
bottlenecks here.
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Fig. 9: Elapsed training time using a randomly distributed
dataset split for each client

Regarding the token distribution (Fig. 10), something simi-
lar is obtained compared to the previous test, with the differ-
ence that now larger imbalances are observed with less clients,
decreasing this imbalance in comparison to the previous test
in the cases of a higher number of clients. This may be
because since clients do not have the full dataset, a client
who collaborate later may still improve the model noticeably,
distributing the rewards slightly better.

VI. CONCLUSION AND FUTURE WORK

In this work, traceability and transparency has been inte-
grated through the use of blockchain technologies (and the
Ethereum network) in FL trainings at the Kafka-ML plat-
form. Thanks to this new integration, clients and their model
contributions can be identified and rewarded, increasing the
confidence of those involved in the process. Since data streams
are needed as datasets for model training with continual data
streams as well as for transferring model weights, this strategy
has potential to increase the adoption of Federated Learning
in the IoT field.
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Fig. 10: Distributed tokens using a randomly distributed
dataset split for each client

To demonstrate the potential of this integration, an use
case for traffic characterisation of wireless technologies in
EVs has been presented and a comprehensive evaluation of
the current implementation with blockchain compared to the
existing implementation has been performed.

As future work, the following improvements to Kafka-ML
and Kafka-ML Federated have been identified:

• Integrate new model aggregation techniques. Although
FedAvg is a suitable aggregation strategy for the proposed
use cases, there are other use cases where the data
are not as uniformly distributed, or cases where there
are customers are significantly slower and participate
fewer times. Currently, these cases are not fully covered,
which would lead to skewed models. However, there exist
more aggregation techniques such as ASO-Fed, FedDR o
AsyncFedED. Integrating some of these techniques into
Kafka-ML could enhance its performance and applicabil-
ity in different contexts.

• Improving reward distribution system. While the concept
presented is still a PoC, for further iterations of this in-



tegration, new ways of distributing rewards to customers
should be explored.

• Integrate other processing tasks. At times, it is necessary
to integrate data processing tasks either before or after
the data enters the model. It would be interesting if this
processing could be applied directly to the data stream
from Kafka-ML.

• Automatic optimisation of hyperparameters. This is an-
other interesting functionality to integrate as it would
save time when looking for a fine-grained solution while
training ML/AI models.

• Another possible approach: IPFS for model sharing. An
alternative for model sharing is the InterPlanetary File
System (IPFS). While Kafka-ML uses Apache Kafka
for centralised data transfer, IPFS offers decentralised
storage, enhancing availability and robustness. Content
addressing via cryptographic hashes ensures data in-
tegrity, and IPFS provides scalability as more participants
join the network.
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