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Abstract
Airborne pollen is produced by plants for their sexual reproduction and can have negative impacts on public health. The
current monitoring systems are based on manual sampling processes which are tedious and time-consuming. Due to that,
pollen concentrations are often reported with a delay of up to one week. In this study, we present an open-source user-friendly
web application powered by deep learning for automatic pollen count and classification. The application aims to simplify
the process for non-IT users to count and classify different types of pollen, reducing the effort required compared to manual
methods. To overcome the challenges of acquiring large labelled datasets, we propose a semi-automatic labelling approach,
which combines human expertise and machine learning techniques. The results demonstrate that our approach significantly
reduces the effort required for users to count and classify pollen taxa accurately. The model achieved high precision and recall
rates (> 96% mAP@0.5), enabling reliable pollen identification and prediction.

Keywords Pollen measurement · Object detection · Deep learning · Open source · Application

Introduction

Many plant species have anemophilous strategies to disperse
their pollen and ensure their sexual reproduction. As a result,
pollen is frequently detected in the atmosphere of almost
every part of the world (D’amato et al. 2007; Buters et al.
2018; Charalampopoulos et al. 2021). Airborne pollen can
be considered an organic pollutant, given that it can produce
adverse effects on public health. Pollen can trigger allergic
reactions in the sensitized population, and it can also promote
the symptoms of other respiratory diseases such as asthma.

Climate change is exacerbating the negative impacts of
pollen on public health. During the last decades, there was an
upward trend in allergy symptoms, and further increases are
projected in the upcoming years (Clot et al. 2020; Lake et al.
2017). In this context, the implementation of airborne mon-
itoring systems is crucial to minimize the impacts of pollen
on public health and the future economy. However, such sys-
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tems are generally based on a manual sampling process: trap
maintenance, sample preparation, and analysis with a light
microscope. In addition, the dissemination of information to
the public requires specialised staff and a lot of workforce.
Due to that, pollen concentrations are usually reported with a
week of delay, constituting a handicap for the pollen forecast
systems (Clot et al. 2020; Galán et al. 2007).

In recent decades, several prototypes of automatic sam-
plers of airborne pollen have been developed. Some are based
on air-flow cytometry, such as theWIBS sensor (Perring et al.
2015), Plair PA-300 (Crouzy et al. 2016), or the Yamatron-
ics KH3000 (Kawashima et al. 2017), while others are on
detecting chemicals (Buters et al. 2012), DNA (Kraaijeveld
et al. 2015), or image recognition (Clot et al. 2020; Oteros
et al. 2015; Crouzy et al. 2016; Buters et al. 2022). These
new methods and devices have reported accuracy rates of
over 80% in most cases, suggesting that they are useful in
identifying the most common pollen types in certain regions
of Europe, America, and Asia (Oteros et al. 2020). However,
these automatic devices are currently expensive and most of
the already existing aerobiological networks are based on
manual sampling devices (Buters et al. 2018). In this sce-
nario, the development of algorithms that can identify and
count pollen from manually collected samples would consti-
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tute a needed intermediate step for the transition frommanual
to automatic sampling. It would reduce the time required to
process the collected samples and the labour costs of the
current aerobiological networks.

At present, there are a few algorithms that can identify
pollen through image recognition, such as those implemented
in the BAA500 sampling device (Oteros et al. 2015), in
the PS-400 Pollen Sensor (Jiang et al. 2022), or in the
Swisens Poleno based on images obtained by digital holog-
raphy (Sauvageat et al. 2020). However, these algorithms are
developed by private companies and thus, they are solely
available in a paid subscription model (Khanzhina et al.
2018). In addition, these algorithms are linked to their spe-
cific sampling devices. They cannot be directly applied to
manually collected samples, such as the ones collected by
Hirst-type pollen traps, which are the current standard for
pollen monitoring (Buters et al. 2018). Frequently, pollen
samples are collected but not counted due to a lack of
time or trained staff. Therefore, developing an online and
open-source tool for identifying airborne pollen from these
already collected samples would reduce costs in aerobiolog-
ical sampling worldwide. Open-source algorithms trained in
pollen recognition could also constitute a relevant advance
for assessing pollen production of trees (Rojo et al. 2015)
or estimating the fruit production of a certain crop through
pollen detection (Ribeiro et al. 2008). This tool would allow
researchers to evade the economic barrier that prevents them
from continuing with the data collection. With deep learning
capabilities (LeCun et al. 2015) these pollen samples can be
analysed and classified automatically without the need for
human intervention.

Previous work has already achieved results with deep
learning algorithms for particle detection and classification,
such as in Andriopoulou et al. (2023), where an encoder-
decoder neural network is proposed for the classification
and segmentation of four phytolith classes. Some of these
techniques have already been tested on pollen recognition,
such as in Kubera et al. (2022a) where several state-of-the-art
model architectures were trained and evaluated on the iden-
tification of three pollen types. Other works such as Daunys
et al. (2022) compared the performance of different model
architectures in pollen identification through image recogni-
tion, and Minowa et al. (2022) evaluated the ability of deep
learning models to recognise 20 different pollen types. In
Monteiro et al. (2021), different deep-learning architectures
were evaluated in the recognition of a large pollen dataset (73
types). Earlier works have also attempted the same task with
more classical computer vision algorithms, as in García et al.
(2012), where contours and colour techniques were used to
correctly account for a good part of the test datasets. Simi-
lar techniques have helped us to automate certain tasks such
as image labelling. However, most algorithms were trained
using pollen types that are abundant in central Europe or

Japan, but few studies have included pollen types predomi-
nant in theMediterranean area. In addition,wehavenot found
any reference to the availability of the trained algorithms and
datasets in most cases.

Facing the growing demand for open-source code algo-
rithms and datasets, this study had a threefold aim: i) to
train and select a deep learning algorithm to identify the
most abundant and representative pollen types detected in
the Mediterranean region by reviewing some state-of-the-art
models; ii) to release a public dataset of different Mediter-
ranean pollen types; and iii) to create an open-access web
application for the automatic imageprocessingof pollen sam-
ples.

Materials andmethods

An overview of the workflow used as materials and meth-
ods in this work is shown in Fig. 1. First, pollen samples
were collected directly from the plants at different locations
inMálaga by the staff of the Aerobiology and Palynology lab
belonging to the Botany and Plant Physiology department of
the University of Málaga, Spain. These samples were stored
and frozen in Eppendorf tubes until the samples of individual
pollen types were produced. Afterwards, the samples were
digitized using an optical microscope and pre-processed to
obtain a standard image format. Subsequently, with the help
of different techniques, a semi-automatic labelling approach
of the images was performed, which resulted in the dataset
that was used to train the deep learning algorithm You Only
Look Once version 7 (YOLOv7). Finally, once the algorithm
had been trained and learned from the pollen images, it was
used to classify and count pollen through new and unseen
images.Thisworkflowhasbeen integrated into thewebarchi-
tecture presented in Section 3. Next, each of these workflow
steps is described in detail.

Sample preparation

Pollen samples were manually collected from open flow-
ers of a mixture of individuals belonging to various plant
species that have the same pollen types. The pollen types
considered for this study were Amaranthaceae, Casuarina,
Cupressaceae, Olea, Palmaceae, Pinus, Platanus, Plantago,
Poaceae, Rumex and Urticaceae, as they are usually detected
in relevant concentrations in the atmosphere of Mediter-
ranean cities and they can trigger allergic symptoms in
the sensitized population (Trigo et al. 2008). Samples were
collected in Málaga (Southern Spain) and were stored in
Eppendorf tubes and frozen under−17oC to avoid their dete-
rioration. For each pollen type, two microscope slides were
prepared with the collected pollen using glycerin jelly as the
mounting media. The glycerin jelly was stained with basic
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Fig. 1 Pollen workflow adopted in this work: from pollen acquisition to pollen classification

fuchsin following the same procedure usually applied to aer-
obiological samples (Galán et al. 2007). Each sample was
cooled until the glycerin jelly was solid again and was sealed
with Eukitt®. The samples had a total surface of 1440 mm2.
This ensures that the pollen grains have the same appearance
as they usually have when collected by the regular aerobio-
logical procedure, and that the samples contain enoughpollen
grains to train the algorithms.

Microscopy and image acquisition

For imaging, an Olympus VS120 optic motorised micro-
scope was used with a UPLSAPO40x/0.9 objective lens.
Themicroscopewas equippedwith aVC50Olympus camera
that captured images of a longitudinal sweep of the pollen
samples. The pictures were initially processed and compiled
using the VS-NIS-SWL-V2.3 software, provided by Olym-
pus. In the first step, samples were scanned at different focus
plains and, then, the pictures were stacked to provide clear
sights of the pollen grains.

Image analysis and dataset preparation

Initially, the images captured by the microscope were in
a proprietary format (Olympus CellSens VSI). To analyze
them, we needed to extract the different slides and con-
vert them to a standard format (such as TIFF, PNG, etc.).
To accomplish this, we utilized the BioFormats library cre-
ated by The Open Microscopy Environment (OME),1 which

1 OME Bioformats Website. http://www.openmicroscopy.org/bio-
formats/

allowed us to convert the microscope scans to a standard
format to proceed with their analysis.

After converting the images to a standard TIFF format, we
proceeded to analyze them. In this study, our initial approach
involved analyzing the images based on their colours and
sizes. To achieve this, we utilized the widely-used Computer
Vision library, OpenCV.2 This preliminary analysis allowed
automatic labelling using specific colour and shape filters,
thus minimizing the additional workload involved in manual
labelling.

In particular, a colour filter on the HSV colour pattern was
carried out, which allows us to select only the regions of a
selected range of colours, which in our case, is the colour
spectrum of the dyed pollen particles. Afterwards, a noise
removal technique (Opening (Jamil et al. 2008)) was applied
to eliminate possible false positives obtained in the previ-
ous step. Finally, we compute the remaining contours of our
filtered image and calculate the bounding box of these con-
tours. Moreover, as the pollen samples are monospecific, we
also get to which pollen taxa they correspond, so our images
are already labelled. A similar workflow was followed in
previous studies (García et al. 2012).

Figure 2 depicts step-by-step the process made using
OpenCV in order to make the first step in automatic image
labelling: 1) example of sample to be processed (Fig. 2a); 2)
image after applying the colour filter (Fig. 2b); and 3) result
obtained after applying noise reduction operation (Fig. 2c).

After the images were pre-labelled, they were provided
in a monospecific dataset to multiple instances of object

2 OpenCV Website. https://opencv.org/
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Fig. 2 Step-by-step computer-guided analysis of pollen sample fragment image

detection models ("YOLOv7" was used as recommended
in (Kubera et al. 2022a)). Then, they were trained to iden-
tify possible new particles in the monospecific images. This
approach further automated the labelling process, where the
human review was only necessary to confirm that all images
were correctly labelled.

Object detection algorithms studied

In order to find the best model that fits our use case, we
reviewed the state-of-the-art object detection models and
selected the following models (and different versions of
them), which we trained and evaluated to select the most
accurate one:

You Only Look Once (YOLO) is an object detection
algorithm that can detect multiple objects in an image or
video in real time. It divides the input image into a grid
and predicts bounding boxes and class probabilities for each
grid cell, using non-maximum suppression (Hosang et al.
2017) to eliminate redundant detections. YOLO is known
for its speed and efficiency, processing the entire image
at once. However, it may have problems with detecting
small objects or those with low contrast. Multiple versions
of YOLO have been released, such as YOLO (Redmon
et al. 2016), YOLOv4 (Bochkovskiy et al. 2020), YOLOv7
(Wang et al. 2022), and YOLOv8 (Jocher et al. 2023). Each
time a new version is released, it consistently incorporates
enhancements, optimizations, or novel methodologies for
information processing, with the aim of enhancing laten-
cies and/or accuracies. A comparison between the different

Table 1 Model evaluation results

Model mAP@0.5 (Val) mAP@0.5 (Test) Inf time (s)

YOLOv7 96.9% 97.1% 337.566s

YOLOX 96.7% 96.8% 318.690s

Faster R-CNN 96.0% 95.8% 453.193s

RetinaNet 87.6% 87.9% 598.186s

versions and their performance is presented in Terven and
Cordova-Esparza (2023), which presents a comprehensive
analysis of the evolution of YOLO releases as well as its
innovations and contributions.

Faster R-CNN (Ren et al. 2016) is an object detection
model that combines deep learning and region proposal
methods. It revolutionized computer vision by introducing a
two-stage architecture, enabling efficient and accurate object
localization and classification. It uses a region proposal net-
work to generate potential object regions and a region of
interest pooling layer for refinement and classification.

RetinaNet (Lin et al. 2018) is an accurate and com-
putationally efficient object detection model designed to
overcome the difficulties associated with detecting objects at
different scales and handling imbalanced class distributions.
The model introduces a unique component known as focal
loss, which dynamically adapts the loss function to prioritize
challenging examples during the training process. Further-
more, RetinaNet incorporates a feature pyramid network to
extract features at multiple resolutions.

Fig. 3 Example of the YOLOv7 algorithm prediction for four different
pollen taxa particles in a microscopy image
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Fig. 4 Web Application Architecture

As demonstrated in the literature (Kubera et al. 2022a, b),
the YOLO model usually provides better results in terms of
accuracy for the detection and classification of pollen. In this
work, we evaluate the above models to validate which one is
the best suited for the general Mediterranean pollen dataset
acquired.

YOLOv7 algorithm for pollen detection

In a second iteration, we incorporated the YOLOv7 deep
learning algorithm to detect pollen particles in samples
(YOLOv7 has been used as it is the one with the best results
as seen in Table 1.). Following semi-automatic image pro-
cessing and labelling, we incorporated the images into a
YOLOv7 instance for training and validation. The dataset
contained images of various pollen taxa mentioned previ-
ously, and the annotations comprised bounding boxes around
each pollen particle in the image and its corresponding type.
The YOLOv7 algorithm proficiently identified the visual
characteristics of pollen particles and precisely predicted
their locations in the image.

The YOLOv7-trained model for this research used our
released open-source pollen dataset comprising 19,579 sam-
ples.3 For training purposes, 70% of the data was used, and
the remaining 30% was considered for both validation and
testing (15% each). The training involved rescaling images
to a size of 1024x1024 and utilizing the default hyperpa-
rameters of YOLO-P6.Moreover, various data augmentation
techniques, such as random scaling, rotation, and horizontal
flipping, were employed to augment the model’s robustness.

To demonstrate image prediction using theYOLOv7 algo-
rithm,we present a representative image from our test dataset
in Fig. 3. The image shows a pollen sample containing four
different pollen taxa particles: Platanus (green), Palmaceae

3 Monospecific Mediterranean Pollen Images Dataset: https://doi.org/
10.5281/zenodo.8108445 Fig. 5 Pollen sample submission form
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(light green), Causarina (pink), and Poaceae (blue). The
ground truth annotations for the image indicate that there
are three Platanus particles, eight Palmaceae particles, seven
Causarina particles, and four Poaceae particles in the image.
The YOLOv7 algorithm was able to detect all the pollen
particles in the image and correctly classify them into their
respective classes.

Web application for automatic image
processing and object detection

To facilitate the adoption of the system for the identification
and categorization of pollen particles by non-technical users,
we created awebapplication that enables users to upload their
microscopy images and perform automatic processing as dis-
cussed in Section 2. The web application was designed to
operate seamlessly with microscopy images acquired using
theOlympusmicroscope.However, it can also be customized
to be compatible with other microscopy image types.

Figure 4 shows ageneral overviewof the application archi-
tecture and its components. The backend provides a web
server and a RESTful API that is consulted by the frontend,
the visual part that is accessed by the users of the platform
for the execution of all the actions provided in the tool, such
as consulting the history of the pollen samples analyzed, or
the analysis of a new sample. The backend also invokes the

YOLO executor, which is responsible for serving the trained
YOLO model for pollen classification through a new API,
i.e., this executor receives pollen images from the backend
and returns the list of pollen found.

The web application was developed with the Angular,
Django, and FastAPI web frameworks and is hosted on-
premises cloud-based server. It can be easily deployed in
a distributed way thanks to the containerization of the com-
ponents through Docker and its integration with Kubernetes.
Kubernetes enables the orchestration of containers in multi-
node deployments.

Users can conveniently access the application through a
webbrowser andupload theirmicroscopy images saved in the
.vsi file format. The web application utilizes the BioFormats
and OpenCV libraries to extract the separate images from
the .vsi file and preprocess them slicing them into smaller
images in order to give a better input to the model. Figure 5
shows the web application form where the user uploads the
samples they want to analyse.

Subsequently, the preprocessed images are forwarded to
a FastAPI instance with the model ready to run inferences.
TheYOLOv7 is developed using the PyTorchML framework
and is hosted on a dedicated server to ensure optimal perfor-
mance and scalability. The YOLOv7 algorithm can identify
and categorize the pollen particles in the images rapidly and
with high accuracy as shown before. The YOLOv7 outcomes
are conveyed back to the web application in a JSON format.

Fig. 6 General overview of the application
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Fig. 7 Confusion matrix result of applying the algorithm into the validation dataset

Once analyzed, the user can check the results obtained
by the algorithm in the Web User Interface and download
the JSON report and the inferred images and their labels
if needed. Figure 6 shows a general overview of the user
dashboard once the analysis has been completed. In this form,
users can visualize the pollen concentrations obtained from
the microscope images submitted.

Overall, the web application provides a user-friendly and
efficient platform for the automatic processing ofmicroscopy
images and the detection and classification of pollen particles
using the YOLOv7 algorithm. The web application can be
easily integrated into research workflows and can lead to
new applications in plant biology, environmental sciences,
and related fields. The application is open source, so anyone

can adapt the application to their specific requirements easily
and free of charge. The source code is available at GitHub.4

Evaluation

As discussed in Section 2.5, the model instances have been
trainedwithmore than 19,000 images, 70%ofwhich are con-
sidered for training, 15% for validation, and the remaining
15% for testing. State-of-the-art deep learning models have

4 Pollen Web App GitHub Repository. https://github.com/ertis-
research/pollen-classifier-container/
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been considered and evaluated to compare the performance
with the proposed model.

The models evaluated are the following:

• YOLOv7-W6 (Wang et al. 2022)
• YOLOX-L (Ge et al. 2021)
• Faster R-CNN X101-FPN (Ren et al. 2016)
• RetinaNet R101 (Lin et al. 2018)

The models have been evaluated with the same or simi-
lar hyperparameters, small differences in batch size, and the
number of iterations because each model requires more or
less memory. The training was performed on a single GPU
(NVIDIA™ GeForce™ RTX® 3090) for a total of 512 epochs
and it was stopped when the first signs of overfitting were
observed on the evaluation metrics (such as a significant
increase in the validation loss). Table 1 shows the mean
average precision (mAP) and the inference time (Inf time)
of the evaluated models. Compared with the other models,
YOLOv7 obtained the highest accuracy rates in the valida-
tion and test, and it is close to the one with the lowest latency
(YOLOX).

As observed in the confusion matrix (Fig. 7), some pollen
types are more difficult to detect than others. Pollen types

such as Urticaceae have high variability in their sight at the
optic microscope. In addition, these pollen grains usually
have irregular surfaces due to being wrinkled, broken, or par-
tially overlapped. However, the accuracy obtained is higher
than 90% in all the pollen types.

Figure 8 shows some examples of well-predicted images,
and Fig. 9 shows some examples of different pollen that could
not be correctly classified by the YOLOv7 model. These
issues are the main problems contributing to the appearance
of false positives in pollen taxa detection and classification.
In Fig. 9a b, some prediction errors are visible due to the
overlapping of pollen particles, and in Fig. 9c d, it can be
seen how there are missing pollen particles to be identified
due to lack of dye or due to blurring of the sample.

This evaluation only involvedmonospecific images. Build-
ing upon findings from Kubera et al. (2022a), the YOLO
algorithm would be able to recognise multiple pollen taxa
in a single image even when trained on monospecific
samples.

In order to assess this statement, we carried out an evalua-
tion with an image set with different pollen taxa, resulting in
similar accuracies to those previously shown (Fig. 10). This
may be due to new overlaps between different pollen taxa or
to other factors already discussed.

Fig. 8 Well-predicted images of
different pollen taxas
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Fig. 9 Potentially problematic
images of different pollen taxas

Regarding the response time,we havemeasured the time it
takes for the different models to infer all the images in the test
set (Table 1). It can be seen that unlike in Wang et al. (2022),
YOLOX was slightly faster than YOLOv7. However, this
may be due to the fact that YOLOX has not been deployed
on PyTorch like the rest of the models. It was exported to
ONNX (an open standard formachine learning interoperabil-
ity5) and executed following the indications of the official
repository. Response time depends on both the size of the
images and the server infrastructure where the application
is deployed. In our infrastructure,6 average response time is
291.4 seconds. Given the small difference in time between
the YOLOX and YOLOv7 models, and the effort involved in
working with YOLOX (problems with libraries, exporting to
ONNX, supportingmodels inONNX, etc.),wedecided to use
YOLOv7 on PyTorch. Lower inference latencies mean that
images will be analysed faster, so the user experience will be
smoother.

5 ONNX Website: https://onnx.ai/
6 2x Intel® Xeon® Gold 6230R CPU& 384 GB RAM (No GPU accel-
eration)

Conclusion and future work

In this paper, an open-source web application powered by
deep learning for automatic pollen count and classification
is presented. The application offers a user-friendly interface,
making it accessible for non-IT users to efficiently count and
classify different types of pollen. The challenges of acquiring
large labelled datasets were overcome by employing a semi-
automatic labelling approach that combines human expertise
and machine learning techniques. The results, which demon-
strate a rate of precision over 97% for the YOLOv7, support
the use of this model to reduce the effort and time required
for accurate pollen identification. The model provided reli-
able results for pollen monitoring, and its implementation
in the pollen alert systems would contribute to the man-
agement of allergies and understanding of pollen’s impact
on public health. This open-access tool represents a signif-
icant step towards simplifying and automating the process
of pollen monitoring, ultimately benefiting both researchers
and thewider community. Theweb applicationwould be also
useful for quantifying pollen from monospecific samples,
such as those obtained for assessing the pollen production
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Fig. 10 Confusion matrix result of applying the algorithm into the multiple pollen taxa set

of trees, or the pollen production of crops. The system, the
machine learning model, and the dataset used (and acquired
in southeastern Spain) have been released openly so that the
community can adopt this pollen counting and classification
system.

As a future work, some of the following improvements
and/or integrations are proposed:

• Complete automation of the sample upload process. An
interesting feature to include would be the ability to
connect the microscopes with the platform in order to
automatically send the images of the pollen samples to
the application. This would considerably speed up the
process by avoiding the transfer of data between inter-
mediate devices.

• Multiple model integration. Although at the moment
there is only one trained and integrated model and the
platform automatically selects that model for inference,
it would be interesting to enable the possibility of inte-
grating other YOLO instances, allowing models trained
for other pollen taxa, or even allowing new tools that
include multiple object detection models such as Detec-
tron2 (Wu et al. 2019). This would give more flexibility
and a wide range of models from which people could
start to count different particles.

• Providing support for new image types. Similarly, as
before, we have currently supported the VSI format,
which belongs to the Olympus microscope we use. How-
ever, the BioFormats library supports a multitude of
formats from a variety of systems. It would be interesting
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to adapt our use case to other types in a way that is simple
and transparent to the user.
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