
Journal of Computational Science 85 (2025) 102522 

A
1

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

A soft sensor open-source methodology for inexpensive monitoring of water
quality: A case study of NO3

− concentrations
Antonio Jesús Chaves ∗, Cristian Martín , Luis Llopis Torres , Manuel Díaz ,
Jaime Fernández-Ortega , Juan Antonio Barberá , Bartolomé Andreo
ITIS Software, University of Málaga, 29071 Málaga, Spain
Department of Geology and Center of Hydrogeology, University of Málaga (CEHIUMA), 29071 Málaga, Spain

A R T I C L E I N F O

Keywords:
Soft sensors
Internet of Things
Machine learning
Nitrate
Water monitoring

A B S T R A C T

Nitrate (NO3
−) concentrations in aquifers constitute a global problem affecting environmental integrity and

public health. Unfortunately, deploying hardware sensors specifically for NO3
− measurements can be expensive,

thereby, limiting scalability. This research explores the integration of soft sensors with data streams through
an use case to predict nitrate NO3

− levels in real time. To achieve this objective, a methodology based on
Kafka-ML is proposed, a framework designed to manage the pipeline of machine learning models using data
streams. The study evaluates the effectiveness of this methodology by applying it to a real-world scenario,
including the integration of low-cost sensor devices. Additionally, Kafka-ML is extended by integrating MQTT
and other IoT data protocols. The methodology benefits include rapid development, enhanced control, and
visualisation of soft sensors. By seamlessly integrating IoT and data analytics, the approach promotes the
adoption of cost-effective solutions for managing NO3

− pollution and improving sustainable water resource
monitoring.
1. Introduction

Nitrate (NO3
−) constitutes a common contaminant in groundwa-

ter and surface water worldwide [1]. The increasing presence of N-
compounds such as ammonium, nitrite, or nitrate in natural systems
is of global concern as it might pose a significant threat to both envi-
ronmental quality and human health. Elevated nitrate concentrations
in drinking water sources can lead to severe health issues, includ-
ing methemoglobinemia in infants, commonly known as ‘‘blue baby
syndrome’’ [2], thyroid effect, or even increase the risk of gastric can-
cer [3]. Additionally, an excess of N-availability in aquatic ecosystems
contributes to nutrient enrichment which causes eutrophication in the
form of algal blooms or aquatic plant growth, depleting oxygen levels
and disrupting aquatic life [4].

In natural water systems, the background concentration of nitrate
within the nitrogen cycle is less than 10 mg/L [5]. However, human
activities are responsible for nitrate increasing trends as fertilisers
constitute the major source of mobile 𝑁 in the soil that might then
be washed away by surface runoff into groundwater or fluvial systems.
Human, animal and industrial wastewaters constitute as well important
sources of nitrate contamination in freshwater systems [6]. Therefore,
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the World Health Organization and the European Union have set the ni-
trate threshold of 50 mg/L for drinking water to avoid potential health
issues [7,8]. These threats linked to rapid hydrochemical variations
produced in some capture points intended for drinking water supply
evidence the need for high-frequency monitoring of contaminants
such as nitrate. Considering the great extension of water distribution
systems and the potentially supplied population (even in rural areas),
the critical importance of controlling nitrate concentrations in water
sources has prompted an urgent need for reliable and cost-effective
monitoring solutions.

Conventional nitrate determination methods have relied on labour-
intensive and time-consuming laboratory techniques, such as the cad-
mium reduction or ion chromatography. While these techniques pro-
vide accurate measurements, they suffer from several disadvantages,
including high operational costs, long turnaround times, and an inabil-
ity to provide real-time data [9]. Ion-selective electrode devices grant a
reliable solution for the latter issue but present high operating budget
and limitations related to the lack of sensitivity as well as problems
related to electrodes maintenance. Optical sensors are widely used
in municipal wastewater treatment systems and constitute a reliable
technique to acquire instant and accurate measurements through UV
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spectrometry [10]. However, these costly devices are prone to suffer
multiple interferences in environments with high turbidity or organic
matter levels. As the world becomes increasingly interconnected and
ata-driven, the demand for continuous, accurate, and economical
rocess monitoring has grown exponentially. Classical configuration
f monitoring stations is based on capture point control only, which

severely limits the ability to respond to unexpected upstream changes.
In addition, the response focuses on the controlled variable, without
considering the effect on the entire process. This demand has driven
the development of innovative monitoring technologies, including soft
sensors [11]. The introduction of data-driven and Machine Learning
ML) based approaches in the development of control systems aims to
vercome the limitations linked to the lack of flexibility of traditional
ethods [12].

Soft sensors provide a flexible and adaptable framework for moni-
oring solute concentrations in different environmental settings. Unlike
raditional sensors that rely on direct chemical analysis, soft sensors
tilise data-driven models to predict nitrate concentrations from a set

of input variables [13]. These models can incorporate a wide range of
nvironmental variables, including physical and chemical parameters,
eather conditions, and historical data, enabling real-time monitor-

ng and proactive management of nitrate levels, through much more
conomical and scalable procedures than conventional real-time NO3

−

ensors.
This research article explores the role of soft sensors for the contin-

ous monitoring and real-time control of water resources by applying a
oft-sensor development methodology [14] for predicting nitrate con-

centrations. The applied methodology takes advantage of the benefits
of the Kafka-ML platform in connectivity with IoT devices thanks
to its direct integration with data streams. IoT devices potentially
send sensor measurements through data streams, meeting IoT needs.

afka-ML [15] is an open-source framework designed to manage the
lifecycle of ML/AI applications using data streams on scalable plat-
orms through a user-friendly web interface. Thanks to this novel
ethodology, a machine learning model can be developed, trained,

and used to obtain predictions directly from data streams with the
ability to visualise them on the same platform. The methodology, now
nhanced by providing support for new IoT protocols such MQTT,

along with a multi-disciplinary framework for the rapid development
of soft sensors, from their conception to control and visualisation, is
presented. Therefore, the development of soft sensors for hydrological
and environmental applications is easily achievable. In this work, a real
use case of monitoring nitrate concentrations in the surface waters from

uadalhorce river and the groundwater feeding the surface flows in
álaga province (S Spain) has been carried out.

The main contributions of this study are defined as follows:

• A scalable platform for deploying data stream-based IoT soft
sensors.

• An experimental case study involving the development of the soft
sensor hardware prototype and the utilisation of the methodology
outlined in the article.

• Analysis of the versatility of Kafka-ML for soft sensor develop-
ment.

• Evaluation of the results of NO3
− level inference from the soft

sensor
• Assessment of the scalability of deploying soft sensors using the

Kafka-ML-based methodology.

Hereafter, the paper structure is described: Section 2 presents the
related work and the potential differences with proposed approach.
ection 3 briefly describes the Kafka-ML tool and the soft sensor devel-
pment methodology. Section 4 shows an application of the method-
logy by using a NO3

− monitoring use case. Section 5 provides an
valuation of several key elements of the methodology. Section 6

reflects the implications of this work’s findings and potential limitations
of the proposed methodology. Finally, Section 7 concludes the work,
including a discussion on potential future developments.
 F

2 
2. Related work

Many works have researched on nitrate concentration forecasting
based on data techniques. In this section, the related work on nitrate
measurement techniques is explored, emphasising the significance of
accurate nitrate concentration data and delving into the emerging
importance of soft sensors in revolutionising the field. The focus is on
exploring the different methodologies employed for nitrate detection
and the role that soft sensors play in enhancing the ability to monitor
and manage nitrate levels effectively.

Paepae et al. [11] explored the viability of using virtual sensors
for real-time monitoring of surface and groundwater quality, with a
specific focus on irrigation purposes. It discusses the growing concerns
of water pollution due to urbanisation, industrial development, and
climate change, highlighting the need for rapid and cost-effective water
quality assessment. The review also spotlights the evolution of wa-
ter quality monitoring from conventional to Internet of Things-based
approaches and provides insights into key parameters for irrigation
water quality assessment. Finally, it explores the design principles of
virtual sensors, evaluating machine learning techniques for inferential
modelling and highlighting the importance of a comprehensive vir-
tual sensing system in an IoT environment. The study concludes by
pointing out the potential of deep learning techniques in improving
virtual sensing for water quality assessment and emphasises the impor-
tance of future research in implementing smart monitoring solutions to
complement traditional approaches.

In a separate review, Haimi et al. [16] presents a comprehensive
analysis of remote sensing techniques applied in biological wastewater
treatment plants, focusing on their full-scale applications. The authors
underline the potential and challenges of soft sensors which have
proven to be efficient and cost-effective in extracting and modelling
crucial process information. They emphasise the ability to analyse
hard-to-measure primary variables (e.g. concentrations of ammonia,
nitrates, and total nitrogen) and process diagnostics in real-time en-
abling advanced control and optimisation strategies to improve envi-
ronmental compliance, safety and cost-effectiveness. The researchers
underscore the growing popularity of data-derived soft sensors, high-
lighting multivariate statistical methods, artificial neural networks, and
hybrid approaches as common techniques for soft sensor development
in wastewater treatment, offering valuable monitoring and backup
capabilities in the face of instrument downtime.

In [17], Zare et al. introduced the use of artificial neural networks to
model groundwater nitrate levels in the Arak Aquifer of Iran. The study
compares artificial neural network (ANN) and linear regression meth-
ods for predicting nitrate concentrations based on various water quality
indices and finds that ANN outperforms LR, offering higher accuracy
with fewer parameters. Regarding its implications for sustainable water
management in arid and semi-arid regions, this study highlights the
mportance of monitoring water quality and the potential of ANNs as a

valuable tool for predicting water pollution levels.
Corona et al. [18] focused on the design and implementation of

data-derived soft sensors to estimate nitrate concentrations in the post-
denitrification filter unit of the Viikinmäki wastewater treatment plant
in Helsinki, Finland. These soft sensors were designed to complement
existing hardware analysers and provide a reliable backup system in
case of sensor malfunction. The article discusses the various stages of
soft sensor development, from preprocessing data to calibration and
performance evaluation. The soft sensors were shown to accurately es-
timate nitrate concentrations and support the existing instrumentation,
offering potential benefits for wastewater treatment plant monitoring
and supervision. The study emphasises the feasibility and practicality
of implementing these soft sensors in the plant’s control system, of-
fering a cost-effective solution for backup and validation of analytical
measurements in harsh wastewater treatment environments.

In another work [19], researchers investigated the use of Random
orest and eXtreme Gradient Boosting (XGBoost) algorithms to model
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nitrate concentration in surface water bodies within the context of wa-
ter scarcity areas and high surface–groundwater interactions, focusing
on the Júcar River Basin (RB) in Spain. The article emphasises the
importance of combining data-driven methods with local knowledge
to enhance model performance and explores the complex relation-
ships between various influencing factors. These models demonstrated
high accuracy in predicting nitrate concentrations, outperforming tra-
ditional hydrological models. The work highlights the potential of
ML techniques for improving water quality management and identi-
fying pollution risk zones, especially in regions facing water quality
challenges.

Related to soft sensors and data streams integration, Wang et al.
[20] addressed the challenge of quickly process data streams gener-
ated from industrial processes to predict quality indicator variables
in real time. Traditional soft sensor models face limitations when
process states change, and the data streams exhibit nonlinearity, time-
variability, and label scarcity. In order to overcome these model con-
straints, the author propose an online-dynamic-clustering-based soft
sensor (ODCSS) for semi-supervised data streams. It employs online
dynamic clustering for process state identification, adaptive switching
prediction to handle gradual and abrupt changes, and semi-supervised
learning to expand labelled training data. The method effectively deals
with nonlinearity, time variability, and label scarcity in industrial data
streaming environments. The results from two case studies demon-
strate the superiority of ODCSS over conventional soft sensors in semi-
supervised data stream scenarios, achieving high-precision real-time
predictions with limited labelled samples and pseudo-labelled data.

In a recent investigation, Online Deep Evolving Fuzzy System
(ODEFS) was presented [21]. ODEFS is an adaptive soft sensor method
or industrial data streams, particularly focusing on improving quality
onitoring in industries such as chemical, petroleum, and steelmaking.
uthors address the challenge of adapting deep learning models to data
treams with evolving characteristics and limited pre-training data.
he proposed ODEFS method is described, emphasising its two-layer
rchitecture: a continuous learning feature network based on Quality-
elated Stacked Autoencoder (QSAE) and a shallow prediction network
ith evolving fuzzy system capabilities. After an exhaustive evaluation,

hey confirm the effectiveness of ODEFS in handling nonlinear, time-
arying features in industrial data streams and provides application
esults from the TE process as evidence of its performance.

Hosseinpoor et al. [22] presented an industrial virtual sensor for
ault detection in induction motors, focusing on the diagnosis of bro-
en rotor bars. The algorithm utilises an ensemble-learning soft-sensor

approach with a novel drift detection mechanism to adapt to changing
data distributions. The virtual sensor includes data collection, signal
processing, and an ensemble classifier, which is equipped with a con-
cept change detection mechanism to enhance fault diagnosis accuracy
in dynamic environments.

Related to air pollution caused by vehicles, [23] proposed an ap-
proach that involves leveraging the OBD-II interface present in most
vehicles to estimate CO2 emissions using soft sensor techniques and
edge processing hardware. The study emphasises the critical role of
urban traffic in CO2 emissions and suggests IoT-based solutions to
monitor and analyse vehicular emissions for better air quality control.
The innovative approach involves real-time computation of emissions
and employs TinyML to enhance accuracy by handling noisy data.

he experimental results show promise, affirming the feasibility and
racticality of the proposed solution.

To sum up, while extensive research exists in nitrate concentration
prediction and soft sensor development across various domains, no
current work focuses on neural network applications for this task,
particularly utilising data streams. Furthermore, there is a lack of well-
defined methodologies for integrating soft sensors with data streams,
except for the one proposed by [14]. Based on this methodology, the
following sections describe a real application of soft sensor for nitrate
concentration prediction and the challenges and solutions faced given
the methodology.
3 
3. Materials and methods

This section discusses the methodology proposed in [14] to create
soft sensors with Kafka-ML, a framework designed to apply machine
learning (ML) in streaming data applications. Soft sensors may predict
process variables by using correlated data, providing a cost-effective
alternative compared to standard sensors. Thanks to the connection
with Apache Kafka, data can be processed and analysed on a large scale
in real time, making it suitable for high-volume data applications.

3.1. Kafka-ML soft sensor development methodology

Kafka-ML [15] is an open source framework designed to orches-
rate ML pipelines within Kubernetes infrastructures. This versatile
ool facilitates the entire ML model lifecycle, comprising the model
esign, training, and inference. Apache Kafka is used as the primary
ata source for data streams in Kafka-ML. This approach not only pro-
otes scalability and fault tolerance but also accommodates distributed
odels [24].

Given Kafka-ML’s intrinsic compatibility with data streams for both
training and inference, it emerges as a compelling solution for manag-
ing real-time data streams characteristic of IoT sensing. This adaptabil-
ity extends to the seamless integration of machine learning models, in-
luding provisions for GPU-accelerated [25] or federated learning [26],

thus empowering decision-making within IoT systems. In this context,
Kafka-ML comes up as a formidable tool for soft sensor design and
development.

As discussed in a previous study [14], there are many works about
soft sensors, each applying different tools. However, it was noted that
a complete and unified platform to support the development of soft
sensors has not been developed. To address this gap, the proposed
methodology has been used to define a soft sensor adapted to the use
case of nitrate concentration monitoring from a collection of springs in
the Ronda area, Málaga, Spain.

In this methodology, the development of soft sensors is achieved
hrough a four-step process that leverages the Kafka-ML framework
or real-time machine learning. It begins with data gathering, pre-
rocessing, and integration, where the training dataset is streamed
nto Apache Kafka for training and validation phases. Next, the model

is selected and trained, with Kafka-ML providing compatibility with
popular machine learning frameworks like TensorFlow and PyTorch.

he trained model is then deployed with a direct connection to the
afka pipeline for real-time inference, enabling the soft sensor to

provide continuous estimations. Finally, the methodology emphasises
on continuous monitoring and maintenance by the real-time soft sensor
predictions visualisation, ensuring that the measurements from the soft
sensor remain accurate and reliable as possible. This comprehensive ap-
proach allows for seamless integration with IoT systems and its scalable
deployment, supporting the dynamic needs of industrial applications.

Fig. 1 shows the steps of this methodology for the development of
oft sensors.

3.2. IoT device prototyping

An IoT hardware prototype with low-power consumption was con-
idered, ensuring that in cases where there is no unlimited power

source, a battery will last as long as possible. Therefore, these devices
are normally able to only read the sensor data, carry out some limited
data preprocessing, and send the data as the device allows to do
so. In this use case, the IoT device is an Arduino MKR NB 1500 as
processing unit. It has connected an Adafruit temperature sensor, a
DFRobot pH sensor and a DFRobot conductivity sensor. These sensors
can operate at 3.3 v so they can be connected directly to the board.
These sensors have been used due to their affordability and the wealth
f information available on these variables in the dataset. By using

components worth about 300 euros (see Table 1), the proposed solution
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Fig. 1. Data pipeline proposed at the methodology.
Fig. 2. Soft sensor development and test at laboratory.
Table 1
Prototype development costs.

Product Description Price

Arduino MKR NB 1500 Development Board 92.40 €
DFRobot EC Meter (DFR0300) EC Sensor 65.33 €
DFRobot pH Meter Pro V2 pH Sensor 64.90 €
Adafruit 642 (DS18B20) Temp Sensor 19.95 €
Taoglas FXUB63.07.0150C Multiprotocol Antenna 11.72 €
Enclosure, tape, screws, etc. Crafting stuff 37.56 €
Prototype Total Cost 291,86 €

is affordable as the price of deploying one nitrate water probe can run
into thousands of euros. This cost difference highlights the affordability
and accessibility of the proposed solution, making it desirable for a
variety of applications or for deploying different replicas. Fig. 2 shows
an overview of the IoT prototype and sensors at the laboratory.

Section 4 describes the implementation of this methodology to mon-
itor nitrate concentrations, serving as a clear guide for implementing
soft sensors in real-world applications.
4 
4. A methodology for the development of soft sensors with Kafka-
ML

In this section, the methodology for the development of a soft sensor
for NO3

− concentration is described, from sensor selection to the real-
time prediction visualisation, considering the details that differ from
a theoretical application to a real one. The architecture that supports
the seamless integration of soft sensors with the Kafka-ML platform is
detailed.

This architecture is the backbone of this work and enables the
connection of any type of soft sensor with IoT connectivity to Kafka-
ML for the management of its information as data streams, allowing
a scalable management of information in real-time. Fig. 3 shows the
scheme of the architecture proposed for this use case, showing also
the technologies that have been used for its implementation. Each
applied technology and its usefulness are described in more detail in
Section 4.3.

To provide a deeper understanding, the key phases of soft sensor
development with Kafka-ML are described, starting with the data inges-
tion, followed by model validation and comparison. Afterwards, model



A.J. Chaves et al. Journal of Computational Science 85 (2025) 102522 
Fig. 3. Microservices architecture deployment proposal.
deployment for inference is presented, to finally show how the soft
sensor predictions can be visualised, enabling real-time monitoring of
the soft sensor behaviour with Kafka-ML.

4.1. Data ingestion to Kafka-ML

To detect nitrate concentrations from related variables, a data-
driven model has been developed. In this case, a dataset containing
13 different physico-chemical parameters (Electrical Conductivity (EC),
Temperature (T), pH, Total Organic Carbon (TOC), Alkalinity, F−, Cl−,
SO4

2−, Na+, K+, Ca2+, Mg2+ and NO3
−) from a karst spring database

in the Eastern Ronda Mountains (NW Málaga province, S Spain), is
used [27]. The dataset includes a complete and diverse representa-
tion of groundwater samples, concentrated in several carbonate karst
aquifers in a study area of approximately 100 km2. These parameters
are particularly useful for analysing nitrate concentrations, with a focus
on their natural origin. However, the dataset also includes water sam-
ples in which anthropogenic influence has contributed to enrich nitrate
concentrations in groundwater, often from sources such as fertilisers,
agricultural run-off, animal waste, etc. Among the variables found in
the dataset, those which might be acquired through sensors available
at a suitable price were selected. These are temperature, pH, and
conductivity.

The data stream ingestion is done through MQTT due to the limi-
tations of using Apache Kafka in Arduino (Kafka is not well prepared
to connect multiple IoT devices). This decision required to make some
adaptations to the methodology during the data transmission stage.
These modifications, further detailed in Section 4.3, have proven to
be successful in ensuring seamless communication between the device
and Kafka-ML. The code running on the Arduino board and Kafka-ML’s
source code are available on GitHub.12

4.2. Model validation and comparison

The next step in the methodology is to define and train models
on ingested data streams. Kafka-ML allows users to define multiple
models and make them available for training in parallel. This facilitates
continuous evaluation of different models, hyperparameters, and archi-
tectures. In a soft sensor design context, it is possible to create multiple
models to compare their performance with data streams previously
received from physical sensors.

Defining models in Kafka-ML is straightforward, users just need to
insert the ML model code in the Kafka-ML Web interface. Once a set of

1 Arduino Soft Sensor Source Code: https://github.com/ertis-research/
arduino-softsensor-kafkaml.

2 Kafka-ML Source Code: https://github.com/ertis-research/kafka-ml.
5 
models has been defined, a configuration (a set of models to be trained
with the same data) will be created. Then, models can be deployed with
corresponding training parameters such as batch size and epochs.

Fig. 4 shows how trained models are shown in Kafka-ML. Different
model architectures have been trained on this data, choosing the one
with the best metrics and deploying it for inference in Kafka-ML. Details
of the evaluation of these architectures can be found in the evaluation
section.

4.3. Model deployment for soft sensor inference

After the ML models have been trained, compared and selected the
one that better fits the dataset, the next step is to deploy the models for
inference. This process allows specifying the Kafka topics where data
is expected to be received and where predictions are to be sent.

The objective was to use Kafka-ML because of its benefits, includ-
ing scalability and fault tolerance. However, Apache Kafka (the data
streaming platform used in Kafka-ML) is not designed to keep multiple
connections, such as the case of IoT deployments. In this case, the
MQTT protocol is a suitable candidate. To address this issue, InfluxData
Telegraf3 has been used as an interface between the devices and Apache
Kafka, so all the information is similarly treated regardless of the
device. InfluxData Telegraf provides a plugin-driven agent that offers
multiple interfaces to establish connections to a multitude of different
kinds of inputs, merging them in this case into a unified endpoint con-
nected to Apache Kafka. This central endpoint facilitates data ingestion
and enables data transmission across multiple IoT devices, regardless of
their communication constraints. InfluxData Telegraf adapts seamlessly
to ingest data from prevalent IoT communication protocols such as
MQTT, as well as custom adapters, enhancing their versatility and
interoperability within the IoT ecosystem. Therefore, in this rede-
fined architecture InfluxData Telegraf serves as an intermediary layer
between MQTT and Apache Kafka.

Until now, Kafka-ML only had support for data received from
Apache Kafka, making this a bottleneck when integrating Kafka-ML
with most low-performance IoT devices. Thanks to InfluxData Telegraf,
data can now be received from a large range of protocols and dumped
into Apache Kafka with low response times, opening up Kafka-ML to
new protocols.

Once the sensor data from MQTT is available in Apache Kafka
through InfluxData Telegraf, they are able to be used in Kafka-ML for
model training (if the variable to be predicted is also measured), to
perform inference on these data, or even to make them available as a
federated dataset for a collaborative training.

3 InfluxData Telegraf Website: https://www.influxdata.com/time-series-
platform/telegraf/.

https://github.com/ertis-research/arduino-softsensor-kafkaml
https://github.com/ertis-research/arduino-softsensor-kafkaml
https://github.com/ertis-research/kafka-ml
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
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Fig. 4. Model result list in Kafka-ML.
Fig. 5. IoT prototype deployment for soft sensor in the Guadalhorce river (Málaga, S Spain).
4.4. Soft sensor visualisation

Once all the previous phases has been configured, users can deploy
the soft sensor physically. Fig. 5 shows the prototype deployed during
a field test at the Guadalhorce river.

An additional step for users who have a trained and deployed
model is to visualise the output of a soft sensor over time. Normally,
this involves creating a custom API to display predictions from the
soft sensor in a web interface. Kafka-ML accommodates this need by
allowing fast deployment of visualisation tools. Users can visualise the
soft sensor predictions in real time, as illustrated in Fig. 6, which shows
an example of visualised predictions from one of the models used in the
evaluation.

To use this feature, users need to set the output topic from their
inference, and can also customise some design elements like the plot
colour or the number of outputs. Once connected, the results from
the soft sensor will appear as shown in the example. It is important
to note that this visualisation tool only displays real-time data. It
has been designed for fast data visualisation, allowing users to avoid
leaving Kafka-ML to use external tools like Grafana [28] for real-time
visualisation.
6 
5. Evaluation

In this section, some relevant elements of the proof of concept
and the architecture designed are evaluated. Already in the previous
work [14], some aspects of the architecture such as response time to
multiple clients as well as communication overhead were evaluated. In
this evaluation, different model architectures are trained to select the
best suited to the dataset (Section 5.1). After selecting the appropriate
model, a message overload test is performed on the soft sensor with
real and simulated data (Section 5.2), looking for the platform’s limits
with InfluxData Telegraf’s integration. In addition, latencies between
the prototype and Kafka-ML inference are measured. Finally, some
preliminary results from the usage of the soft sensor in the field and
laboratory are shown (Section 5.3).

For the evaluation of the soft sensor performance in Kafka-ML,
the framework has been deployed on a cluster architecture with the
following computation capacities:

• Hardware configuration. Kafka-ML has been deployed on a
cluster of 7 state-of-the-art servers. Each server has an Intel(R)
Xeon(R) Gold 6230R CPU with two NVIDIA(R) Tesla(R) V100
GPUs as well as 384 GB of RAM.
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Fig. 6. Real-time NO3
− contents soft sensor prediction visualisation in Kafka-ML.
Table 2
Models architectures used during evaluation.

# Architecture

Model 1 512 × 128 × 64
Model 2 256 × 64 × 32
Model 3 256 × 128 × 64 × 32
Model 4 128 × 64 × 32
Model 5 512 × Dropout(0.2) × 128 × 64
Model 6 256 × Dropout(0.2) × 64 × 32

• Software configuration. Each node runs Kubernetes v1.21.6 and
Docker 20.10.8 on Ubuntu 20.04.3 LTS. A Kubernetes master was
installed on one node and the others functioned as Kubernetes
secondary nodes.

5.1. Evaluation of machine learning models with Eastern Ronda Mountains
dataset

Six different model architectures have been evaluated, each with
a different number of layers and neurons per layer. In addition, some
of these have been modified with Dropout layers. Models have been
trained using Huber loss as loss function, Adam optimiser, and Scaled
Exponential Linear Units (SELU) as activation functions in hidden
layers. Table 2 shows the different model architectures evaluated.

The models have been defined in Kafka-ML, stacked in a configu-
ration and deployed across the different nodes with the same training
parameters. These have been trained for 32 epochs using a 8-sample
batch size. Mean Absolute Error (MAE) and Mean Squared Error (MSE)
have been used as metrics to benchmark their performance. Fig. 7
shows the MAE decrease for the different models and Fig. 8, the
corresponding for the MSE.

As can be appreciated in the MAE and MSE metrics, all of the
models have similar metrics, so model_4 has been selected as the best
given its low metrics fluctuation and its lower error rate. Once selected
model_4 as the baseline model, the inference experiments proceed
using this model.

In order to assess the model’s performance, MAE (1.55 mg/L) and
MSE (5.60 mg/L) are compared to the dataset’s statistical properties,
which shows a mean concentration value of 8.15 mg/L (±6.63 mg/L).
MAE of computed results is around 19% of the standard deviation and
24% of the average NO3- value, suggesting that the model reasonably
forecasts nitrate concentrations over a wide range of concentrations.
This is further supported by the MSE, which indicates that even at low
7 
concentrations, the model is able to handle minor variations. These
findings imply that the model could be potentially applied to real-
world scenarios –such as drinking water quality monitoring– given its
versatility to work with different solute concentration ranges. However,
despite obtaining an acceptable error for a preliminary application of
the model, further development of the tool is necessary to improve its
precision, especially in high ranges (>50 mg/L), and thus expand its
field of application.

5.2. Scalability assessment of the proposal using real and simulated data

For evaluating inference performance, the response time of the
inference service has been benchmarked through several experiments
employing different configurations. These experiments have involved
deploying the service with a varying number of clients transmitting
sensor data for inference. In addition, the number of Kafka replicas and
partitions has been manipulated.

These performance benchmarks are relevant, notably in cases where
users need high availability of predictive models due to the deployment
of multiple sensors in a measurement area.

Different setups have been created to control the availability and
scalability of the system, controlling scalability by increasing the num-
ber of partitions and fault tolerance by increasing the number of
replicas. The utilised setups are the following ones:

• One un-partitioned topic with the model replicated once.
• One topic with two partitions and the model replicated twice.
• One topic with four partitions and the model replicated four

times.
• One topic with eight partitions and the model replicated eight

times.
In each experiment, 512 sensor data messages have been sent and

the prediction time of the model has been measured. This process
has been repeated 32 times to obtain an average result. The tests
have covered various inference replication configurations, Kafka topic
partitions and they have been repeated with different numbers of
concurrent clients (namely 1, 2, 4, 8, 16 and 32 clients), exploring the
behaviour of the system under various request loads.

The standard Kafka-ML use case involves a single-issue, single-
partition configuration without replicating the inference module. Fig. 9
illustrates that this configuration works adequately with a few clients,
but experiences overhead and a latency increase as the number of
clients increases.



A.J. Chaves et al.

p

m
m

c
r
s
d
a

h
t

e

n
e
d
h
g
p
b

m

Journal of Computational Science 85 (2025) 102522 
Fig. 7. Validation MAE decrease of the evaluated models during training.

Fig. 8. Validation MSE decrease of the evaluated models during training.

Fig. 9. Average inference latency response with different number of clients, topic
artitions, and replicas.

Increasing the number of model replicas and distributing the data
widely in Kafka-ML improves these results. Especially in cases requiring
higher availability, lower latency is observed (except when replication
and partitioning have reached their limits). Therefore, it can be con-
cluded that increasing replication and partitioning can mitigate latency
in scenarios that require higher availability.

Another experiment has been carried out to evaluate the perfor-
ance of the methodology and Kafka-ML across different data trans-
ission frequencies. In this experiment, simulated IoT devices has
8 
Fig. 10. Responsiveness of Kafka-ML towards data transmission at different time
intervals at different scenarios.

generated data at specific time intervals in order to evaluate the re-
sponsiveness of Kafka-ML and to identify the time threshold at which
the predictive capabilities are no longer limited.

In this experiment, once again four different scenarios has been con-
sidered, depending on the number of partitions and replicas deployed.
This scenario has also considered different measurement times for the
soft sensor with different number of replicas.

The results (depicted in Fig. 10) indicate that introducing replicas
significantly improves performance, especially with lower communi-
ation latencies. With longer time intervals (5 s) it is shown that
eplication does not provide any improvement, but requiring higher re-
ource allocation needs. Therefore, the final decision on replication will
epend on the specific communication requirements of the resulting
pplication.

5.3. Correlation of the soft sensors with laboratory data

Laboratory experiments and field tests with the prototype device
ave been also conducted. The laboratory tests are intended to validate
he performance parameters obtained a in controlled environment.

Thus, the accuracy of the model has been monitored under various
conditions, as well as the inference time by replicating scenarios that
mulated real-world deployments.

Subsequently, the evaluation has been extended to a real-world sce-
ario by conducting tests on a river. Deploying the prototype in a real
nvironment has allowed to assess its robustness and performance in
ynamic, unpredictable conditions. During these river tests, the system
as processed live sensor data acquired from the surface waters and
roundwater from Guadalhorce river and associated porous aquifer,
redicting the NO3

− concentration given the data written at the MQTT
roker by the prototype device.

Tables 3 and 4 show the results obtained by the sensors and the
odel as well as the comparison with the laboratory data.

As can be seen in Tables 3 and 4, due to the use of measurements of
different nature (trained with a dataset from Eastern Ronda Mountains
and tested with river water data in southern Spain) as well as the use
of samples with disturbed conditions at the laboratory, the predictions
obtained do not have an acceptable accuracy. This matter is discussed
afterwards.

6. Discussion

The methodology adopted in this study [14] has demonstrated ex-
ceptional technical advantages in the soft sensor development
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Table 3
Laboratory samples data comparison.

T CE pH NO3
−

Milli-Qa Laboratory 24.1 0 6.998 0
Soft Sensor 23.774 0.509 7.035 9.603

Site 11 Laboratory 17 NA 7.7 5.59
Soft Sensor 16.755 11.512 7.037 0

Site 2 Laboratory 15.9 NA 8.05 8.94
Soft Sensor 15.333 11.809 7.032 0

Site 8 Laboratory 16 NA 7.87 15.97
Soft Sensor 15.161 15.424 7.026 0

Site 14 Laboratory 15.8 NA 7.83 34
Soft Sensor 15.024 10.519 7.04 0

Site 4 Laboratory 15.8 NA 7.78 56.72
Soft Sensor 15.096 11.555 7.026 0

a Milli-Q water is ultra-pure water processed through a Millipore purification system,
removing impurities for laboratory and research applications.

Table 4
River samples data comparison.

T CE pH NO3
−

Site1 Laboratory 23 2.05 7.52 ≈ 0
Soft Sensor 22.813 0.484 7.026 10.277

Site2 Laboratory 23.3 0.75 7.37 ≈ 0
Soft Sensor 23.125 0.782 7.0446 5.227

Site3 Laboratory 23.3 2.97 7.96 3.21
Soft Sensor 22.625 2.9558 7.045 3.139

domain, being acceptably applied to a NO3
− real-time monitoring

use case. Using Kafka-ML allows users to manage the pipeline of
heir ML models using data streams efficiently. The advantages are
he rapid development of soft sensors, low response times, and scal-

ability. Moreover, thanks to the possibility of using low-cost devices,
it is possible to deploy multiple soft sensors and monitor a wider
area, managing the workload with ease. The real-world application
of this methodology highlights its efficacy as a feasible approach to
environmental monitoring.

By combining controlled laboratory experiments with real tests on
he river, efforts have been made to validate the prototype’s perfor-
ance under various conditions, trying to ensure its efficiency and

eliability in real deployment scenarios. The results of these real tests
rovide valuable information about the adaptability of the system and
ts suitability in practical applications.

During the evaluation stage, the methodology’s operation as well
s the communications performance has been verified, obtaining low
esponse times from the sensor sampling until the data is predicted
n the server. Problems with the pH sensor, along with significant
ifferences between the conditions in the used dataset and evaluated
nvironments, raise concerns about the direct applicability of exist-
ng data to different environments. However, our main focus was to
emonstrate the feasibility of Kafka-ML and the methodology in real
nvironments by using a self-developed prototype as an example, being
he main benefits clearly identified.

To address the accuracy issue, a proposal has been made to create
 dedicated dataset for the surface waters and groundwater from the
uadalhorce River basin. Given the unique hydrochemical behaviour
f each ecosystem, site-specific training is crucial. This dataset would
e used to retrain the soft sensor through transfer learning, providing
n opportunity to learn from existing data while adapting to the unique
haracteristics of the Guadalhorce River ecosystem.

7. Conclusions and future work

In this work, a methodology for the development of soft sensors
based on data-streams is presented. Specifically, an attempt has been
9 
made to develop a PoC soft sensor for the detection of nitrate con-
centrations. During the course of the project, various challenges were
aced while implementing the methodology, such as the incompatibility
f the Arduino boards with the sending of data via Kafka, which
as overcome by incorporating the InfluxData Telegraf tool, providing

upport to new technologies in this methodology.
To show the potential of the redesigned methodology, load tests

have been carried out, simulating the connection of a multitude of
devices, proving that Kafka-ML and the methodology work in harmony,
serving with many devices as desired. A hardware PoC of the soft sensor
has also been made, and its behaviour has been evaluated, resulting in
a device on which the methodology can be applied.

It is expected that this refined methodology will be applied in future
rojects in collaboration with water management companies, using
igher quality sensor technology as well as a larger number of input
arameters, giving the model higher quality.

As future work, the following improvements to the methodology are
roposed:

• Data preprocessing and postprocessing. In many machine learn-
ing application scenarios, optimising model performance often
involves the need for data preprocessing or post-processing. While
these tasks are usually performed before feeding the data into the
model for training or inference, a valuable feature of Kafka-ML
and the proposed methodology lies in the seamless integration
of data processing activities and statistical analysis within the
workflow. Although InfluxData Telegraf enables data processing,
it is not easy to use for non-technical users, so adding a section
in Kafka-ML to do this job would be of great importance.

• Pretrained model inclusion. One potential functionality for Kafka-
ML is the integration of user-pretrained machine learning mod-
els. This functionality has the potential to significantly improve
the versatility of the platform, allowing researchers to leverage
existing models for various applications and real-time analysis.

• Concept drift detection and correction. In order to enhance the
adaptability of Kafka-ML, a concept drift detection mechanism
could be incorporated. This enhancement will ensure that the
models remains relevant in dynamic soft-sensor environments,
responding autonomously to evolving data patterns for more
resilient and accurate predictions.

• Improve inference module response time. Although Kafka-ML’s
inference module has a good performance, it is still improvable.
An enhancement would consist in optimising Kafka-ML’s infer-
ence performance to reduce latency. This effort will contribute
to faster and responsive predictions in multiple scenarios, consol-
idating the effectiveness of Kafka-ML in real-time applications.
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